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ESTIMATION OF DELAYS AND OTHER PARAMETERS IN
NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

H. T. Banks and P. L. Daniel

ABSTRACT

We discuss a spline-based approximation scheme for nonlinear nonautonomous

delay differential equations. Convergence results (using dissipative type

estimates on the underlying nonlinear operators) are given in the context of

parameter estimation problems which include estimation of mualtiple delays and

initial data as well as the usual coefficient-type parameters. A brief summary

of some of our related numerical findings is also given.
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§1 Introduction

In [6] spline approximation ideas are developed in the context of numerical
algorithms for solution of functional differential equations (FDE). The
theoretical framework is based on a functional analytic formulation (in an
appropriately chosen Hilbert space Z) of Ritz-Galerkin type ideas where one
approximates on finite-dimensional subspaces ZN the underlying linear solution
semigroup T(t) (with infinitesimal generator A) for the FDE by linear semigroups

NAPN, where PN is the orthogonal

TN(t) (with infinitesimal generators AN =P
projection of Z onto ZN). These ideas were subsequently ([3], [4]) used in
developing numerical schemes for parameter estimation and optimal control
problems. The fundamental theoretical tool employed is the Trotter~Kato theorem
(a functional analytic formulation of the Lax equivalence theorem: stability
plus consistency yields convergence of approximation schemes) for linear semi-
groups. In this paper we present approximation results that subsume those in
[6], [3], and [4] in that we develop schemes to estimate parameters that include
multiple delays, coefficients and initial data for nonlinear nonautonomous FDE.
Our theoretical arguments avoid the Trotter-Kato linear semigroup formulation
altogether. Rather, we combine dissipative type estimates with use of the
Gronwall inequality to develop a theory that not only allows for rather general
nonlinearities but also accomodates with ease nonautonomous systems (both of
which are features that the Trotter-Kato linear semigroup framework excludes).
Of course, one could use an evolution operator analogue of the Trotter-Kato
approximation theorem to obtain results for linear nonautonomous equations

(see [7] for details), or a nonlinear Trotter-Kato type theorem for nonlinear
autonomous FDE (see [13], [14]). Both of these separate approaches however

are less direct than the one developed here when applied to parameter estimation

problems,
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While the approximation methods we develop can be used with great success
to simply solve initial value problems for nonlinear nonautonomous FDE, the
main focus of our treatment here is parameter identification or estimation.
That our ideas can also be fruitfully employed in control problems is demonstrated
in [9], [10] while application of the methods to estimation problems for certain
partial differential equations can be found in [s].

The fundamental ideas (which were first presented for simple nonlinear
autonomous, known delay, estimation problems in [1] and subsequently extended
to treat nonautonomous, unknown delay, FDE problems in [10]) are really quite
simple. However, the development of a theory for identification of the delays
is a delicate matter since the "history space'" for the delay system changes as
one iteratively estimates the delays. This, unfortunately, results in a rather
complicated presentation from the standpoint of technical notation regardless
of the approach (e. g., see treatment of the linear autonomous system case in [b]).

Our presentation is as follows: In section 2 we describe a parameter
estimation problem for FDE's and give an equivalent Hilbert space formulation
involving an abstract nonlinear evolution equation. Section 3 contains a
discussion of approximate estimation problems based on spline subspaces; general
convergence results are given. We conclude with a final seciion in which we
present representative numerical findings obtained using the approximation
scheme proposed in section 3.

Most of the notation (e.g., HP for Sobolev spaces, Lp for Lebesgue spaces,
etc.) 1s quite standard and is in accordance with popular usage. The symbol
[+] will be used in general to denote the norm in various spaces in instances
where no confusion will result. However in some situations it 1s absolutely

essential to distinguish special weighted norms. These special norms will be

e e kL




b et

defined as they are used in the discussions below. For convenience of the
reader, we have summarized these definitions in a brief appendix for quick
reference.

Finally we wish to mention the motivation behind our efforts to develop
the methods presented below. In [4] and [10] one finds brief descriptions of
nonlinear delay equation estimation problems arising in the study of enzymatically
active column reactors. Although such problems actually prompted the theoretical
investigations that we report here, a discussion of the application of our
methods to these problems would be quite lengthy and thus will be the subject

of a separate report.
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§2 Formulation of parameter estimation problems for nonlinear FDE

In the present section we describe the parameter estimation problem for a
delay differential system and detail conditions under which solutions exist.
Our approach then is to reformulate the FDE - governed identification problem
as an abstract problem on an infinite-dimensional state space, concluding the
section by establishing the equivalence between the FDE and the abstract state

equation.

We consider the vector nonlinear delay equation

x(t) = f(a, et x(t), x, X(t-ry), ..., x(eT)) ¥ g(t), a<t<hb
(2.1)
(x(a), xa) = (n' ¢)

where x denotes the R"-valued function 0 - xc(O) = x(t +0), -r <0 <0, and
g is a general Lg (a, b) perturbation term. The equation depends on the parameters

vy = (¢, q), where ¢ = (n, ¢) is the initial data in some set SC W, with
Wz ((3(0), MeR" x 15(- r, 0) |yerl(- r, O}

The parameter q = (a, Ty eees rv) is assumed to be in Q = A x R where a 1is a
coefficient-type parameter in the set Ag; RY and the discrete delays are chosen

from the set

<r, r >0}

R = {(rys «ous rv)eRvIO = r v

<r, < ... °<r

1

0 v

with r > 0 fixed and given throughout this paper.
To simplify notation we shall use "‘r to denote the norm on L;(- r, 0)

\Y
while we use || to denote the norm on L;(- r, 0) and L;(a, b). We make the

following standing assumptions on f throughout the paper:




(H1) The mapping f satisfies a global Lipschitz condition on

R" x Lg(- r, 0) x R™ uniformly in (a, r) e Ax[0, r]. That

is, there exists m, ¢ Lz(a, b), m, > 0, such that for all

1 1
(5 ¥ wl’ ceey w\))’ (s, X yls ceey y\)) € Rn X erl(' r, 0) x an:

[£Cay x s €y 6y ¥y Wiy veey W) : flay T ty & % ¥yu eees ¥

< my(t) e -8l +ly-xl_+ = |W1'Y1|}
v 1=

for all (a, r ) € Ax[0, r] and a.a. t ¢ [a, b].

(H2) For each (o, rv) e Ax[0, r],
f(a, Tt eees *): [a, b] x R" x Lg(- r, 0) x R™ + g"
is differentiable, and

£ £, o, £, ¥0), ¥y ¥(- 1))y ey V(- 1)) s in H'(a,b)

for every ¢ ¢ Cn(-r,O) = C([—r,O];Rn) and every (a, Tis soes rv) e AxR.
(H3) Given any x ¢ Cn[a-r,b], the mapping

c - ft(a,rv,c,x(c),xd,x(o-rl),...,x(o-rv)) is in

L0(a,b) for all q e Q.
(H4) The function f is continuous on A x [0, r] x [a, b] x R® x L;(- r, 0) xR"™,

Remark 2.1 It follows immediately from (Hl) and (H2) that f satisfies an affine
growth condition; that is, for a given x ¢ Lg(a -r, b),
(2.2) If(u. LA t, x(t), Xe» x(t - rl), ooy x(t - rv))l

v
< ml(t) {|x(e)| + ’xt'rv + 1Ellx(t - ri)]} + mz(a, T t),

where mz(u, LN t) =|f(a, L, t, 0, ..., O)Iis in Lz(a, b). Quite standard

arguments may then be employed to demonstrate that, for each q ¢ Q,
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- f(a.rv, t, x(t), X x(t - rl), ey xX(t - rv)) is in L'll(a. b) and that the

mapping depends only on the equivalence class of x; therefore there will be no
difficulty associated with point revaluations of x appearing in f since we shall
write (2.1) as an equivalent integral equation.

Before we direct our attention to the estimation of the parameters appearing
in (2.1) we shall first state results guaranteeing the existence, uniqueness and

continuous dependence of solutions to the state equation for each choice of param-

eters (g, @ ¢ S x Q.

Theorem 2.1 Let vy = (z, qQ) = (n, %, a, rl, ceas rv) be given in S x Q. There
exists a unique solution x to (2.1) on the interval [a - r, b] which depends

continuously on {n, ¢, g} in the R" x Lg(—r,O) x Lg(a,b) topology.

In the proof, which may be found in [10, p. 6] and will not be detailed here, one
employs general uniform contraction principles (see [12, p. 7]) and relies heavily
on hypothesis (Hl) and the growth condition (2.2).

We turn now to an examination of (2.1) when the parameters, including the

delays r -+» T, and initial data (n, ¢) are to be estimated. We will restrict

l‘

our attention to parameters in the admissible initial data-parameter set

I = S x Q where we assume throughout that T has the following property:

+
(RS) Q is compact in R and SC W is compact in the R™ x Lg(- r, 0)

topology.

The identification problem consists of finding y € T which provides the best

least squares fit of the parameter-dependent solution (of the model equations

(2.1)) to observations of the output at discrete sample times. The problem,

which could also be reformulated as a maximum likelihood estimation problem,




may be formally stated as follows:

~

Given g and observations {ui}, u S

i € R™, at times {ti}, i=1, ..., M,

find ; in T which minimizes

p M 2
(2.3) J(y) =5 7 lc(@x(t,; v) - u|
2 i i
i=1 ]
{
over all vy = (i, @) in T. Here C is a given s x n matrix continuous in ;

q; and u(t;y) = C(qQ)x(t;y) represents the "observable part”" of x(t;y), the

golution to (2.1) corresponding to Y.

Remark 2.2: For ; = (;; E; ;, ;i, ceey ;;) the optimal parameter, it may happen
that ;v < r so that we actually only need E defined on [~ ;;, 0] to integrate ]

the state equations (2.1) (and, in fact, the $ we obtain in practice will be

defined on that interval only). We will view $ as a function on all of [- r, 0]
by making an arbitrary, but definite, continuous extension from - ;s back to - r,

so that (n, $) is an element of S as required.

o A — s

Remark 2.3: The compactness assumption on S will not be difficult to satisfy

in practice since a sufficient condition for compactness is that all elements

(n, ¢) in S are such that n belongs to a compact set in Rn and ¢ 1is bounded in

Hl(— r, 0). An example of one such admissible initial data set is the set of

all polynomials on [~ r, 0] of order < k (k a nonnegative integer) with coefficlents

in a compact set.

§ 2.1 An abstract reformulation of the estimation problem

We next reformulate (2.1) as an abstract evolution equation in an infinite-

dimensional state variable. Our approach involving use of the state space

Rl’l

x L; (- r, 0) is quite standard and well-established in the FDE literature




(see, for example, [2] and the references therein); however, the dependence here
of operators and state spaces on unknown parameters requires that we make such

definitions in this and the following section with a certain amount of care,
We will let Z = R" x L;(- r, 0) with norm
0
T
£+ f vx. For (¢, t) € Q x [a, b], (£, ¥) ¢ R® x ¢"(-r,0)
-r

induced by the inner product

<(&, V), (8,%)>

define F(q, t, &, y) = f(a, T, t £y, Uy w(-rl). ey u(-rv)) and A(gq, t): W+ Z by
(2.4) A(q, t)(¥(0), v) = (F(q, t, ¥(0), ¥),D v},

where D¢ denotes the L; (- r, 0) function that is the derivative of y. 1In
addition, let G(t) = (g(t), 0) ¢ z, for t ¢ [a, b].
The equivalence of the FDE (2.1) to an abstract evolution equation is
detailed in Theorem 2.2; before proceeding, however, we need two results that
also will be called upon frequently in §3, so they are stated here as lemmas.
Our first proposition is actually a restatement of the well-known result (8, p. 100]

d
that ac

2 x(®) | = <x(0), x(0)>.

Lemma 2.1. If X 18 a Hilbert space and if x: [a, b] + X is given by
t

x(t) = x(a) + f v{(cs)do , then

a

t
Ix(t)l2 = |x(a)|2 + 2 f < x(o), v(o) > do.
a

The second result describes how to construct an equivalent topology for 2 4
so that the nonlinear operator A satisfies a dissipative-type inequality. The

lemma, a nonlinear version of that found in [2, p. 186] and [6], greatly simplifies

our calculations and is the foundation for our development without the use of i

semigroups.
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Lemma 2.2. Let q = (a, rl, cees rv) € Q be given. For y = (£, ),

2z = (8, x) ¢ Z define a new inner product on Z by <y, z>q S gTG +

[o]
/| w(®)x(9)5(q) (6)d0 where 5(q) is given on [- r, 0] by

~r
[ 1, oef-r, - rV]
(2.5) @@ = ¢ 2, 0 (-ry, -r, ]
\ v, 0¢ (- rp, 0].
Then,

<A(q, B)y - A@q, )z, ¥ - 2> < w(t) |y - 2|§

for all q € Q, almost all t ¢ [a, b] and all y, z ¢ W. The function w > O is

3 v+1 v 2
in Ll(a.b) and is given by w(t) = > ml(t) + 7 + > ml(t).

Proof: Let y = ($(0), ¥), z = (x(0), X) € W.

<A(q, t)y - A(q, t)z, y - 2>q =

[F(g» t, ¥(0), ¥) - F(a, t, x(0), 01 [¥(0) - x(0)]

(o]
+ (- D)W - x)(0)p(q)(0)do
~-Tr

where

(o)
f Dy - D) (v - x)(0)p(q) (B)do

-r

. [r“ D(lw(e) ;1(0)[2> 40
-r

=-r

v j-1 2
=1 -rj




2
) mxC DT e - e 0l b - 31
2 2 * 2

(v +1)

vl e 1) - x(- '1"2 W= £ = x(- £ )12
-1 2 - 2 -+ 2
3=1

2
voju(= 1) - x(- )]
<82 D 1y - w2 - g e

31

Therefore, for almost all t ¢ [a, b],
<A(q, t)y - A(q, t)z, y - 20

< (160 - x| +a )]s - x| w0 - x(©)]
v

v
* L IvEr) - Xl @ @O - xoh

3=1
v+1 2 1 ¢ 2
e ORI S SN ITCE SIESICE B
3
3=1
m@® v 2 ™ 2
(mo S+ )lw(O) O[T+ Tl

2 2
where we have used repeatedly the fact that ab < %— + %— . It follows then

that
A, DY - A, Bz, ¥ - 22 < w(®]80) - x(0) |
+ w(t) |y - xlf

AY

Y
< w(t)|y zIq .

duianatiitin;

i
!
1




It is clear that for all q € Q, the norm I-]q on Z induced by the p{q)

weighted inner product is equivalent to the usual Z norm sincel < S(q) <v+1.

Theorem 2.2 For fixed v € T let y(t; v, g) = (x(t; v, &), xt(Y. g)), where
x is the solution to (2.1) corresponding to vy = (n, ¢, a, L TREEES rv) and

g ¢ Lg(a, b). Then y(y, g) is the unique solution on [a, b] of

(2.6) z2(t) = ¢ + [° {A(q, 0) z(0) + G(0)}do .
a

Furthermore, y(t; y, g) ¢ Z is continuous in t ¢ [a, b}, and uniformly continuous

in {z, g} € W x L;(a, b) (in the Z x Lg(a, b) topology) uniform in t ¢ [a, b].

Proof: We shall sketch the proof of the theorem, which demonstrates that (i)
the integrand in (2.6) is well-defined and integrable, (ii) the equality in (2.6)
holds for z(t) = y(t; v, 8), and (41ii) the solution y is unique and continuocusly
dependent.

To prove (i) we first must show that y(t; y, g) € dom (A(g, t)) = W for each

t ¢ [a, b], or, since xt(O) = x(t), that x_ ¢ Hl(- r, 0) for all t. Using the

t
affine growth condition (2.2) on f and the continuity of x it is not difficult
to show that t + f(a, LN t, x(t), X x(t - rl), ooy x(t - rv)) is square-
integrable on [a, b] so that, using the fact that x = ¢ on [a - r, a] , we
obtain x ¢ L; (a - r, b). Standard estimates in [11, p. 254] may be invoked

to demonstrate that

1

2.7 = (k- x) > (;‘c)t in L;(— r, 0)

t+e

go that D (xt) - (;c)t £ Lg (-r, 0), for each t ¢ [a, b]. Arguments similar to
these may be used to show A(t)y(t) + G(t) is integrable on [a, b], concluding

the proof of (1).
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The argument that y(t) = (x(t; v, 8), xt(y, g)) satisfies equation (2.6)
is trivial if this equation is examined componentwise: The R" part of (2.6) is
simply a restatement of (2.1) while the desired equality for the Lg(— r, 0)
component follows immediately from (2.7).

Finally, uniqueness and continuous dependence of solutions on (7, g}
follow from arguments that will be repeated often throughout this paper and will
be presented in detail here for the case of continuous dependence; uniqueness

also follows from these arguments. Let 2y, z, denote solutions to (2.6)

2
corresponding to {cl, gl], {cz, 82} respectively with q ¢ Q fixed. Then, for

t e [a, b],
2)(6) - 2p(t) = g, - g, + {t (A(0)z, (0) - A(0)z,(0)

+ (81(0). 0) - (32(0), 0) }do

so that from Lemma 2.1,

2
|

2
ENCRENOI M-S LA

t
+ 2 £ <A(o)z1(c) - A(c)zz(o). zl(c) ~ zz(o)>q dao

t
+2 [ [(gy(0) - 8,(0), O] |2)(0) - 2,(a)] do
a

A

2 t 2
|§1 - c2|q +2 { w(o)lzl(c) - zz(o)lq do

t t
+ 1)) - 8@, 012+ [ 12)(0) - 2,2 ¢o
a a

[

b
oy = 2w+ 1) + gy - 5,0 + { (2u(0) + Dz (o) - 22(°)|§ do-
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Gronwall's inequality may be used to obtain

2 2 2
l2)(®) = 2,(0) [0 < (g - "0+ 1) + [g) - gyl
b

exp [ (2w(o) + 1l)do
a

from which continuous dependence (uniform in t ¢ [a, b]) follows at onuce. -

We have demonstrated the equivalence between an FDE in x(t) ¢ R" and an
abstract evolution equation (AEE) in the infinite-dimensional state variable
z(t). We remark that the infinite dimensionality of (2.6) is inherited from
(2.1) in that in the latter the history of x on [t - L t) is required before
X may be determined at t. Thus the computational difficulties encountered with
(2.6) are not simply an undesirable feature of this reformulation of (2.1) but
rather are a manifestation of the inherent infinite dimensionality of the
underlying FDE.

In view of the established equivalence, the ID problem in (2.3) may be
reformulated as an abstract 1D problem, where we now wish to find Y €& T which
minimizes

1 ¥ ~ 2
(2.8) Itv) =35 E lc@ympz(eys v) - v
. i=1
over all vy € T where Tyt 2 R" 1s defined by wo(g, y) = &,

In the next section we investigate the problem of approximating the infinite-
dimensional identification problem (2.8) by a sequence of finite-dimensional
state space identification problems (where the state variable satisfles an

ordinary differential equation (ODE) on a finite-dimensional state space XN).

Fundamental to this undertaking is the establishment of the convergence of




14

solutions of the approximating systems on XN to solutions of the original

equation on Z. Although our formulation is a classical one of the Ritz type
(involving orthogonal projections of an infinite-dimensional system onto a
sequence of finite-dimensional subspaces) our problem is complicated by the

fact that the state space changes for each choice of parameters q = (a, Tyo cees
rv). This concept is explained in detail in [4, p. 800] and involves the idea {
that the natural state space for z(t) associated with the parameter choice

q = (a, Tis cees rv) is X(q) = R" x L;(— rv, 0), where in general X(q) $ 7. 1

Since we would expect the (finite-dimensional) approximating spaces XN(q)

associated with q to be subspaces of X(q), we obtain a sequence of sgpaces {XN(q)} 3

where XN(q) is different for each choice of q and is wusually not contained in Z.

sl

§3 Approximate parameter estimation problem

Our focus in this section is the definition of finite-dimensional ODE-

governed estimation problems which approximate the ID problem governed by the
AEE (2.6), and their relationship to the original FDE-based ID problem. While
we shall present the details for a scheme based on linear splines, arbitrary
order spline approximations may be employed in a similar way with only slight
modifications in the arguments detailed below (see the theory developed in [6]
on which all of our development here is based).

For parameters y = (%, q) € T consider

t
a.10 My v =P@r+ [ W, 920 1) + PNQGO) Mo, t e [a, bl
a

wvhere AN and PN are defined via the following q-dependent operators and spaces.

For a given q = (a, Tis ooy rv) we define the Hilbert apace X(q) as the set
0

Rh

x L) (- r,, 0) with inner product <(&, ¥), (8, 0> = £76 + f w(©)x(0)e(q)(@)do,
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where p(q)(0) = g(q)(o) - 1, with 3 defined as in (2.5). We shall also use an
equivalent topology on X(q) given by the (unweighted) inner product

(]

<&, ¥)y (8, )y q " CTG + { ¢(0)x(0)do. The operator C+(Q): X(q) » Z is
’ -r
\Y

the "continuous extension" operator defined by C+(q)(£, v) = (&, w) where
V= ¢ on [- LN 0], $(0) = v(- rv), oe {-1r, - r)); 1(q) : Z » X(q) 1s defined
by 1(q) (&, ¥) = (£, V) where y is the restriction of ¢ to [- T 0]. The sub-

spaces XN(q) of X(q) are defined by XN(q) = {(y(O), w)] y is a piecewise linear

N H
= [~ - (k-1)N - - .

spline with knots at tj(q) (-3 - k-1 er rk_l)/N] ro_p
J=(k-1N+1, ..., kN, k=1, ..., v; tg = 0} and we denote by 1

"N(q) : X(q) ~» XN(q) the canonical orthogonal projection of X(q) onto XN(q)

il i o B

along XN(q)L. Finally, PN(q) 1 Z > XN(q) is defined by PN(q) = nN(q)i(q) and
AN(q, o) : X(q) » XN(q) is given by AN(q, o) = nN(q)A(q, o)nN(q) where here
A(q, o) 1s interpreted as an operator on X(q) given by A(q, o)(wq(O),wq) =

F k] k] v E] v

(F(q, @ Wq(O) wq) qu) for (wq(O), wq) e X(q) (with wq the extension of wq

to all of [- r, 0] defined by E& % 0 outside of [- T oh.

Remark 3.1 AN is well-defined since XN(q), the range of nN(q), is contained

in the domain of A(q, t). Note also that AN(q, t) actually may be considered

as an operator from Z into XN(q) if it is defined by AN(q, g) = PN(q)A(qg O)PN(q)-
For present uses though, PN(q); and zN(c, y) are in XN(q) so that viewing

AN(q. o) as an operator from XN(q) to itself yields (3.1) as an equation on

XN(q), a finite-dimensional space since each of its elements is completely
determined by its value at each of VN + 1 knots. Equation (3.1) is then

equivalent to the ODE
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s vy = aVq, 0@ )+ PN@en, te G, b]

(3.2)
2a; v) = PNz,

which, as we shall show in the arguments that follow, approximates (2.1) in

some sense.

When the parameter Y is unknown we may state an "approximate identification

problem" PN associated with (3.1) and (3.2):

Find ;N = (ZN, EN) € T so as to minimize

M -
P =g L le@ngsces v - )
i=

~

over vy € ', where g and observations u1 at times ti’ i=1, ..., M are

given and zN(t; v) satisfies (3.1).

We now establish the existence of a unique solution to (3.1) for each
choice of y, and, further, the existence of a solution 7N to the Nth ID problem,

P N First we must state an analog of Lemma 2.2 which demonstrates a type of

dissipativeness for AN.

Lemma 3.1. Let q= (a, r ooy rv) € Q be given. Then

1’

N N N N N
<A (q, t)Y - A (q, t)zN, y - 2 >p q
1]
NIZ

<w(t) |yN -z 5.4
1]

for all yN, zN € x”(q) where w, defined in Lemma 2.2, is independent of q and N.
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Prcof: Note first that for y, z € W(q) = {(¥(0), ¥)]v € Hl(- T, 0)} we may
argue that

<A(q, t)y - A(q, t)z, y - z>0’q < w(t) |y - 2|§,q

using estimates similar to those used to prove Lemma 2.2, where w(t) is

independent of q, N. Then for yN, zN € XN(q) C W(q),

N N N N N N
<A'(q, t)y -A(q, t)z,y -z >y Q
]

<“N(Q)A(Q. t)ﬂN(Q)YN - vN(q)A(q, t)ﬂN(q)zN, yN - zN>p q

<A(q, t)wN(q)yN - A(q, t)wN(q)zN, wN(q)yN - WN(q)zN>

Pyq

12

w(e) | N (@yY - N o.a

I A

NIZ

w(t)IYN - P.q

I A

where we have used the properties of the (self-adjoint) orthogonal projection
nN and the dissipativeness of A(q, t) on W(q).
Our next result demonstrates the existence of solutions to (3.1) as well

as to the 1dentificat16n problem P&. In addition, the proof sheds light on

the numerical procedure used to solve (3.1).

Theorem 3.1 Let g ¢ L;(a, b) and vy = (Z, q) € T be given. Then there exists

a unique solution zN(t; Y, 8 € XN(q) to (3.1) on {a, b] with the property that
the map {1i(q)z, g} -+ zN(t; (Z, 9), g) is uniformly continuous on X(q) x L;(a, b),
uniformly in N and t. Finally, there exists a solution:?N to the Nth

identification problem PN for each N =1, 2, ...

o — - 4un-u-l!ll'"!'ll!..ll;lll!H-!--l-l----u-n-----——-"-yql

PP
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Remark 3.2: The continuity with respect to initial data given in this theorem
is actually "uniform in q € Q" in the following sense: Given ¢ > 0, there exists

6§ > 0 independent of q and N such that for ¢ € S and q ¢ Q with

1 %2

N N
IC - Czlx‘q < &, we have [z (t; (Cl, Q, 8) - z (t; (cz, q)’g)'x,q < ¢. This

1
type of "uniformity in q" follows from the arguments given below for Theorem 3.1

and will be used in establishing the convergence results of Theorem 3.3.

Proof: We first argue existence, uniqueness and continuous dependence of
solutions to (3.1). We shall do this using arguments similar to those in [1] and
[6] (where zN(t) is written in terms of basis vectors for xN(q)). Let q £ Q be
fixed, q = (a, Tis oo rv), and let eN denote the scalar first-order spline

3

function on [- T, 0] characterized by

N N
ej (ti) Gij . i, J 0, 1, ..., VN
where Gij is the Kronecker symbol and t? = t?(q) are the knots defined for

functions in xN(q), i=0, ..., . Define

N N N
e (21(0). ej)‘ § =0, ..., W, and

N

N
8 VN

= (eg, vees e V@I, where

1 1s the n x n identity matrix and @ denotes the Kronecker product so that

Bnis an (n *n(wN + 1)) -matrix-valued function on [- L 0]. Represent by

éN the matrix-valued pair,

8" = 8N, 8Y).

N

From [6], XN(q) = gpan {éj

}» 3=1, ..., n(WN + 1) where the basis vectors
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are given by B? - (B?(O), B?). B? the jCh column of BN. It follows then that
since zN(t) € XN(q). there exists wN(t) € R“(\)N + 1) such that
N "N
2 () = 8N ()
VN “ !
= 7 W (el i
j= 3 b
wN
= o), | wi(oe))
1 3=0
N n N N
N for wj(c) eR, =0, ..., vN. Furthermore, since P"G(t) and P ¢ are
' vectors in XN(q), there exist GN(t), ;N € Rn(\)N +1) such that

PNoce) = 8N6N(e)

and

"N N
i PNC = SN;

‘ so that equation (3.2) may now be written in terms of BN as

B () = aV(q, g (e) + 8Y%6N(e), te (a, b] :
(3.3)

éNwN(a) = éNcN .

Let Ap(q, t) denote the representation of AN(q, t) (restricted to XN(q)) with

respect to the basis of XN(q). Here AN(q, t) is nonlinear as opposed to the

matrix (linear) version of the operator arising in [6]. As in [1] aud [6], usual

Galerkin calculations establish that the coefficients wN(t) in (3.3) satisfy -~

GN(t) - AN(q, wie) +6Nt) , te (a, b]
(3.4)

via) = N
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We next establish a representation of AN(q. t) which will enable us to consider
the existence and uniqueness of solutions to (3.4) as well as the realization of
numerical solution techniques for the system. Note first that

A, 020 = M@a@, Or'@ ey, Z v (t)ej)

N N PANEY N
=7 (q)(f(a,r .t,wo(t), 2 w (t)e z w (t)e (- -1, Z w (t)e (-r )), E w (t)Ue
v 3=0 3 ] Vy20 3 j=o ¥ 13

= wM@ (Fa,r e (), Z vy Noyoely

3

l+n(wN + 1)

where £ : A x [0,r] x R + R" is defined by

?(a, rv, t, (vo, eeny va)T) =

N N
£(a, T ,C,V., Z v 2 v.,e ( £ )yeney ) Ve, (-r))
for v, € Rn, j =0, ..., W, and can be shown to be globally Lipschitz in

3

(v . v Rn(vN + 1)

since f satisfies such a condition. Thus,

n(W + 1)

T
vN)

Ap(q, t)wN(t) - aN(t). where QN(t) € R is such that

e a (t) - A (q, t)éNvN(t)

= n“(q)(?(a. LAY wN(t)). y w (t)ng)
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It follows from [6, p. 508] that whenever WN(Q)(S. y) = éNGN. (¢, v) € X(q),

N . Rn(vN + 1)

8 , we have

sV - @7 N, v

where the nonsingular matrix QN is given by QN = (BN(O))TBN(O) +

0 0
[ Yo 8N@) (@) (©do and wV(g, v = YO e + [ M@ v©@0(q) (0)d0.

-r -r
v \Y]

We may apply these results to obtain

vN

-1
) = @O V¥, r, g W), T W D)
v =0 ] ]
¥(a r t wN(t))
_ N —1 ’ \)’ ’ N _1 N N
= (Q) o + (Q) Hi, (t)
0
where HTZ is given in [6] and [10] by
N oN, N QN
N 0> 0 tor wN* T0
Hyp = : : ® 1.
N N *N N
<e0, evN> - <€ N en

In this matrix <+, +> denotes the o (q)-weighted Lé(— rv, 0) inner product.

Similarly, AN(t) 1n (3.4) is given by G\(t) = @ Ve (e)),

T c Rn(vN + 1),

RN((g(t), 0)) = (g(t), 0, ..., 0) so that (3.4) may be rewritten

as
Moy = @7 da, e, 6w @) +a®, 0 L, 0
(3.5) + @H! HTZWN(t). t e (a, b]

wN(a) = cN.

s
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+ ,
BN+ 1) gince ¥ satisfies a global Lipschitz

an ODE in wN(t) = wN(t; Y, 8) € R
corndition in wN(t), the form of (3.5) allows one to employ standard ODE theory to

ebtain the existence of a unique solution wN(t) on [a,b]. We can therefore conclude
that
M) = NN (e) 4

is the unique solution to (3.1) (and (3.2)) on [a, b] for ¢ ¢ 2 given.
The proof of the continuous dependence on Z and g as stated in the theorem 1
is identical to the corresponding proof in Theorem 2.2 where dissipativeness ]

N
for A"(q, t) is now used to show that whenever |7, - ¢

1

2|Xq<6and b
*

fgl - ng <§, 5 = §(€sw,a,b) independent of t, q, and N, we have for the

N N
corresponding solutions, zl(t; @y q), 8;) and z,(t; (Cz, ), 8y)»

N N
[z (®) - z,(0) ]y o

<z - ol

for all t ¢ [a, b].

Finally, to establish existence of a solution ;N to PN’ one argues continuity
(for fixed N) of the map vy = (g, q) ~> nozN(t; y) = wg(t, y) and thus infers
continuity of y » JN(Y) on the compact set I'. But it is not difficult to see

that the right side of (3.5) depends continuously on q as do the basis elements

N
i

data) from the theory of ordinary differential equations can then be invoked

e, (q). Continuous dependence results (with respect to parameters and initial

to obtain the desired conclusions.
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th
In view of the last result, we are assured of a solution ;N to the N

estimation problem F% (which 1s a standard least squares problem governed by

an ODE). Since an application of conventional optimization techniques requires
a solution to (3.1) for each choice of y, straightforward computational schemes
may be devised to solve (3.5), the associated ODE in the "Fourier" coefficients
wN(t). Although it may be relatively easy to solve the finite-dimensional
problem P, the solution ;N we find is meaningful only if ;N approximates the
solution ; to the original ID problem. Fundamental to the establishment of

this fact (i.e., the convergence of ;N to ; in some sense) is the demonstration

N
that the sequence of state variables {zN(t; YN, g)} converges to z(t; vy, g) given

any sequence {YN} with yN -+ $ = (2, a) in I'. We shall first consider this

problem for limits ; and perturbing functions g such that {2, g} lies in a smooth
but dunse subset of W x L; (a, b) (which simplifies our calculations). We 1
then extend the convergence results for all limits E and perturbations g such |

that (%, g} ¢ W x L)(a, b).

§3.1 Convergence of state variables

We shall assume that a sequence of parameters {YN} in T has been given,

N N N N N N N N VoA
Y=, d) = o, e o, f), L, £, and that Y - ¥ = (2, =
(%, 3, g. %1, ceey }v)’ in the sense that (i) qN - a in Ru+v and (i1) {
Ii(qN)(z - CN)1O qN > 0 as N » w, We make the following standing assumptions 1
: i

N
on vy and S:

n, 4"
(H6) There exists some Gr > 0 such that lrk - rk-ll > 6r' k=1, 2, ...y V.

+
(H7) If £ €S then C(gV1(qV)¢ e § for all N.
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Remark 3.3: We note that the set S involving all polynomials of order < k on
[- r, 0] mentioned in Remark 2.3 does not, strictly speaking, satisfy (H7).
However, the reader can easily see from the arguments below that a modification
in defining the extension operator C+ (rather than extend from [~ rv, 0] to
[- r, 0] by constant values, extend any polynomial on [- o, 0) to [- r, 0]

by simply extending the domain of definition of the polynomial) would allow the

set S of Remark 2.3 to satisfy (H7) and not require any change in the convergence

arguments to follow.

In what follows we will simplify notation by abbreviating XN = XN(qN).

AV = AN, o), A = ag, o, BN = PNeM, Nz 1@, o= AN,

+
Ck

z C+(qN), and

We shall also use to denote the

z e N
Pyq

Lg(— rt, 0) norm weighted with o(qN). We remind the reader that

either the Z or L;(— r, 0) norm while

N N

denotes

denotes the unweighted Lg(- rg

» 0)

N
Ty

norm. When no confusion results we shall also write z(t) instead of z(t; %. g)
and zN(t) for zN(t; YN, g), the solutions to (2.6) and (3.1) associated with %
and yN, respectively.

For q given in Q, define I(q) = {{C. g}l e Wx Lg(a, b) |z = (v(0), ¥),
Ve Hz(-r, 0), g € Hl(a. b), @(0) = F(q, a, ¥(0), %) + g(a)} and define

S= {(W0), ¥) ¢ z|v ¢ HE(- £, O)}.

Lemma 3.2. For any q € Q, I(q) is dense in W x Lg(a, b) (in the Z «x L;(a. b)
topology). Furthermore, if {z, g} e I(q), then the solution z(t;(%,q),8) =
(x(t;(C.Q).S),xt((C-Q),S)) to (2.6) corresponding to f, q, g, satisfies

z(t) ¢ S for all t ¢ [a, b].
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Proof: Let q ¢ Q and ¢ = (y(0), ¥) be fixed in S and define I (q, §) =
(8 - L3(a, b)|g c H'(a, b), g(a) = §(0) - F(a, 2, ¥(0), V)}. Then for g

€ Lg(a, b) given and ¢ > 0, standard arguments may be used to construct a g

(D Gatisfying g(a) = ¥(0) ~ F(q, a, w(0), ¥) with

that is plecewise-C
g - gl < e. That is, I(q, 7) is dense in Lg(a, b). Furthermore, for 7 ¢ S,

the pair {7, g} belongs to I(q) whenever g ¢ I(q, ), so that
Mle) < 1@, ©lg 1@ e W x L, b)

where the first set is dense in the last since S is dense in W. It follows
that I(q) is dense in W x Lg(a, b).

Required for the proof of the second part of the theorem is a verification
that x ¢ L,(a - r, b) (since Dz(xt) = (;)t for t ¢ [a, b]). If (¢, g} ¢ I(q),
z=1(n, ¢), 1t follows that x ¢ C(l)La-r,b] since: (1) i(t) = é(t-—a) for

te la-r, a); (2) fort e (a, b), x(t) = f(a, Foe by X(E), X 0 X(E = 1)), ..o,

t

x(t - rv)) + g(t), which is continuous from assumption (H2) and the definition
. - . . +

of I(q); and (3) x(a ) = ¢(0) = F(q, a, ¢$(0), ¢) + g(a) = x(a ). Further, the

differentiablility of f and g yields

x(t) = £,(@ T, £ X(0), Xy )+ G, T, XD, Xy ) x(t)

t’ t*

+ fw[a, Tty x(8), Xy vees it]

\Y
+ 121 fyi(a, Tt X(8), X, - OX(E - T+ g(E)
for t ¢ (a, b), where f6 denotes the Frechet derivative of f(a, £, O £, Y,
Yys oo yv) with respect to 6, § = g, £, ..., v, The global Lipschitz

condition on f ensures that these derivatives (excluding fc) are bounded, so
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that, for almost all t ¢ (a, b),

o)

I A

m () [x(0) ],

lfg(u. r,t, x(t), X,

lf,‘,[av r\)’ t, x(t), xt, veed xt]]

A

m, (t) |x, [,
and similarly for fy . Therefore,
i

|;(t)| < |fo(a. s t x(t), X_, «..)| + cml(t)i'lé(t)l

t’
- n
almost everywhere on (a, b), where m, g€ Lz(a, b), and ¢ is a constant.

Using (H3) we thus obtain that ; € Lg(a,b) and it hence follows that

X € Lg(a - r, b) since ;(t) = ;(t -a), te(a-r, a), $ € Lg(- r, 0).

|

Essential to our convergence proofs are certain standard estimates from

the theory of spline approximations, in particular the Schmidt inequality and

Theorem 2.5 from [16]. The inequalities are stated in the next lemma.




Lemma 3.3. Let z = (y¥(0), ¢) be given in S, and denote by (wN(O), wN) the

element PNz of XN. Then the following estimates may be obtained for N sufficiently

large:
K
N 1
3.6 |PNz- 2| <= |07yl
N
N Y
(3.7) lov™ - iy < 5 107 vl
1/2
Kk, /%
2
3.8 [Ne - v < (—%+ T ) 19° o], 0 ¢ [- &Y, o]
N

where k. and k, are positive constants independent of N and qN.

1 2
Proof:
IPNz - zIN = |ﬂNiNz - iNle
< |z¥ - iNzIN
= o] - ¥l

where z? = (w?(O), w?), w? the interpolating spline for vy ¢ H2(— r, 0) with

knots {t?}. From [4, (6.10)] we know
21/2

N r
oy = vly < =55 109l
N

so (3.6) obtains. The calculations for the estimates in (3.7), (3.8) are found

in (4, pp. 814-15].

e e 4wl

it
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N N
These estimates may now be employed to show convergence of z (t; y , g) to

\ v N
z(t; y, 8) (in the proper sense) when z(t) ¢ S; i.e., when {z, g} ¢ I(q.

N

N N
Theorem 3.2. Let (YN} be arbitrary in I with R AN CANE DR

. ‘ Y
y = (E. :) ¢ T, where {2. g} € 1(3), and let zN(t; YN, g), z(t; v, g) denote

the solutions tu (3.1) and (2.6) associated with YN and $ respectively. Then
N N N v
|z (t5 v, 8) - Prz(t; ¥, g)[y ~ 0

as N > » uniformly in t ¢ [a, b].

Proof: We have ,N ., zN(t) L

t
=P CN + J' {AN(O)zN(O) + PNG(o) 1o
a

t
-2 - [ (Pa)z(0) + PN6(0) Ydo
a

t
- %a) + [ ()2 @) - PMace)2(0) 1o
a

so that from Lemma 2.1 we obtain

N 2
INOIMER AT

t
+2 [ <A@z - ANe)P"2(0), 201> do
a

t
+2 [ A@P2(0) - P'A@)2(0), aN(0)> o
a
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i
|

t
M@ (2 + 2 [ wo) [a%0) | 2o |
a

| A

t
+2f !AN(c)PNz(o) - PNA(O)z(o)|N|AN(o)|Ndc ;
a

tA

t
!AN(a)IS + [ (2u(o) + 1){AN(c)|§do
a

b
+ f [AN(O)PNz(o) -~ PNA(c)z(o)ISdo.
a

Gronwall's inequality may be employed (since the L1 function 2w + 1 is positive and

AN is continuous in t) to obtain

b
IAN(t)Ig < (el(N) + ez(N)) exp f (2w(c) + l)do
a

Rl i ot m

where

2
e, = [aVa) |

b
ez(N) =£ IAN(c)PNz(o) - PNA(o)Z(O)Ist-

It remains to show that ei(N) + 0 ags N + »; that the convergence is uniform
in t is readily seen. First,

N Wy

O A I PN A -

N

converges to 0 as N +~ » from the definition of convergence of YN to ;. We

will also obtain ez(N) + 0 once we demonstrate the dominated convergence of

A" @)P"2(0) - PYA@)2(0) |2 + 0.
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Let z(o) = (yo(O). yo), PNz(O) = (yE(O). yg). y§ € Lg(— tg. 0). Then

|a¥ (o) PNz (o) - PNA(o)z(o)|§
= 1@, 9r'PN2) - MA@, o)z |2

_ {.N N N N N
= |7 (F7, 0, ¥ (0), v, Dy)

- N F@, 0, v (0, v, Oy )12

< 7@, o, Ny - FG, 0, v (0, )12

+ | 0y) -y |2

- N
z TT(O) + T2(°)’

where yg must be extended to all of [- r, 0] (by defining it to be zero off
[- rﬂ, 0]) before F is evaluated at yg. From (3.7), ’I‘r;(c) +> 0 as N » =,

Furthermore,

(1) en1/?

< IF(qN, O, y’:(o)’ Y§) - F(qN’ O, YO(O). YO)I
+ R, 0, y,(0), y) - F@, o, y,(0), v)]

E T?(o) + 12(0)

where 12(0) + 0 as N + = gince quite standard arguments (recall (H4)) may be

used to show that the map
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q = (a, rla ey r\)) g F(q; o, ¥(0), ¥)
= f(qb r\)a g, lll(o). W. lb(- rl)’ cv 0y VJ(' r\)))

is continuous whenever y is continuous. In addition, r?(o) is 0(%) (for almost

all o) from (3.6), (3.8) since, for almost all o,

IF(qN. a, y§(0), yg) - F(qN. g, yo(o). yc)l

N N ¥ N, N N
<m @) {ly (0 -y (O +ly -y |+ 121 ly (-t =y (- D))

and |y: - yo‘N < |PNz(o) - z(o)|N. Therefore, for almost all o ¢ [a, b], i

T?(o) +» 0 as N > », and the convergence (a.e.) to zero of the integrand of

VR WA

ez(N) is assured. Dominated convergence follows from similar arguments:

[AN(U)PNz(o) - PNA(o)z(c)fs

< (rl;(o) + 'rl;(o))z + 1) (0)

a8 before where, from (3.7), Tg(o) < k§| Dzycl2 < kiMO < w,

R L L A G L ML L <o
oela, o oela, S-r a-r Lg(a—r, b)

(we have made use of Lemma 3.2 to assert that £(o) ¢ S for all o; {.e.,

Yy € Hz(a - r, b)). The Lipschitz condition on f and estimates (3.6), (3.8)

may be used to show
TN(O) < em, (0)
1(0) < emp ()M,

for a constant ¢ > 0 and almost all o. Finally,




rg(o) = IF(qN. o, ¥(@), y) - F(q, o, y(o), yc)l

<2 swp [F(a, o, y(o), y)|
(q’c)CQx[aob]

where y was determined by a fixed a € Q and is thus independent of q and is
continuous. Again the continuity of F(q, o, y(o), yo) in (q, ¢0) may be easily

established, (q, o) in the compact set Q * a, b], so that there is some

TP AT Loy

x %
(@, 0) in Q x [a, b] such that

N x % *
T,(0) <2 [F(a, o, y(0), y )l

It follows then that, for almost all o ¢ [a, b],

IAN(o)PNz(o) - PNA(O)Z(O)I;

< (emy ()M, + Ml)2 + k§M0 = h(o)

vhere h ¢ Ll(a, b) (since m € Lz(a, b)). The theorem thus obtains.
||
We now turn to the main state variable convergence result for arbitrary
(E. g} ¢ Wx Lg(a, b); it contains the key arguments needed to prove Theorem 3.4

N

below which describes how solutions 7 (to PN) converge to ;, a solution to the

original parameter estimation problem.

i N NN
i Theorem 3.3. Suppose AR Y where YN = (N, qN) and Yy = (£, q) are arbitrary

in I'. Then for any g ¢ Lg(a. b), |
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N N N
moZ (€5 v, 8) » T2 (ts v, 8)
as N > » uniformly in t ¢ [a, b].

Proof:

N N Y
Inoz (t; v, g) - NOZ(t; Y, 8) |
N N N v
< Iﬂoz (t; vy, 8 - ”OP z(t; v, 8) |
N v v
+ [P 2(t; ¥, 8) - mpz(t; v, 8) |

- N N
= Tl(t) + Tz(t)

where Tg(t) + 0 as N > » uniformly in t ¢ [a, b] from the convergence

woPNz * Mg ZE Z, demonstrated in [4, p. 814)]. (Uniformity here is due to
the fact that z ¢ {z(t; ?, g)lt ¢ [a, b]}, a compact set in Z). Further, since
1(3) is dense in W x L;(a, b), a pair {2, ;} may be chosen in 1(3) arbitrarily

close to {2, g} so that, given that
(e < [N @, dY, @) - Pz @, 9, 9
< e @ dh, o - e (@ e D, e
+ 12 (¢ 1V, N, @) - P @ D, By
s P20 @ D8 - P2 & D, By

the first and third terms may be made as small as desired from the continuous
dependence of zN, z on {iNc, gl € X(qN) x L;(a, b) and (7, g} ¢ Z x Lg(a. b)

respectively, uniform in N and t (we may use this result for the first term

IS

2 s b

i,
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N #N . N No
since [¢° - Qliely o = [N - 1Nzlx’q < 1NN - iNE(N + 07 - 1]y 1s

arbitrarily small from the convergence of cN to E). Finally, the middle term
goes to Ouniformly in te [a, b] as N + » since {7, g} € l(a) and the parameters

(C;iNt, qN) involved converge to (g, a) in the sense required (13 - qN! -+ 0 and

~

U
'1 g - iN(CuiNc)fN = (), so that we are quaranteed the uniform convergence of

N
N N N
ToZ (t; vy, 8) to noz(t; Y, 8).

||

§3.2 Convergence of Parameters

Our attention to this point has been focused on the convergence of solutions
zN (to (3.1)) to the solution z (to (2.6)), once the convergence of any sequence
of parameters has been established. In reality, though, we have yet to determine
that any sequence of solutions {;N} to F% is in fact convergent; even then, we
must prove that the limiting value Y is indeed a solution to the original param-
eter identification problem. The result we now state addresses this question
and indicates when an approximate ID problem Ph may be used to compute numerical

solutions for the original problem.

Theorem 3.4. Let {;N}, ;qu I', be a sequence of solutions to the approximate
parameter estimation problems PN. Then there exists ; e ' and a subsequence

N N _
{y k} such that vy L v and, if y and S satisfy hypotheses (H6) and (H7), y is

a solution to the original parameter identification problem.

Proof: From (H7), the sequence {q;iNEN} belongs to S and S is compact in the Z

N —
topology, so that a subsequence satisfies ,C;kink 4 k_ £ |+ 0 for some f € S.
Nk
b,

The cowpactness of Q guarantees the convergence of a subsequence of {E

u&AmLhAméﬁ__Aﬂ_.m__m_____h_J_dii

il




N

ky _ N N Nk
q + q for some q ¢ Q. Relabelling as y ~, we have a sequence Yy = (¢ ,
.._Nk — - = Nk -
q ) in ' that converges to vy = (f, q) in the required sense because q + q
and
N N
="k 1/2 + -k
1, =z -1, ], <v' i, ¢ 1 -1z
N — v
K Ne TN N M N N Xa
N
+ - —
_<_v1/2lCN iy c X _Z] >0
k 'k

It remains to show that ; is a solution to the original ID problem. We have

(see (2.8) and JN in the definition of PN)

-1 M - Y
I =5 7 le(@mz(e; v, 8) -
i=1

N N

k -k

=1lim J “(y )

N.=»>

k

N.
< lim 3 5(y)
Nk—>ao

N _N —
where the continuity of C and the convergence of ﬂOZ k(t; Y k, g) to noz(t; Y, 8)

is used to obtain the second expression and the final inequality holds for any

N N
y € T since vy k is a solution to PN . The convergence of T2 k(t; Y, g) to
k

noz(t; Y, g) for any vy ¢ T also follows from Theorem 3.3, so it follows that

Ny
J "(y) » J(y) as N =, or that

K -»>
JY) < Jy)

for any vy ¢ T. Thus y is a solution to the original identification problem.
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§4 Numerical Results

In this concluding section we present a sample of numerical findings
obtained using the spline approximation estimation schemes discussed above.
The test examples we investigated were chosen with certain types of applications
and/or difficulties in mind. Example 4.1 deals with a nonlinear pendulum
(small oscillations are not assumed) with damping through a linear feedback
on the velocity., i.e., U(i) = kx. We assume the existence of accuator delays
in effecting the feedback laws. (Delayed damping and delayed restoring forces
are quite common in mechanical systems -- see Chapter 21 of [15].) A possible
application is associated with the design of a damped 'pendulum" to '"track’” a
given course or program ;(t). Example 4.2 involves a nonlinear nonautonomous
multiple delay equation in which the nonlinearity is of the Michaelis-Menten,
Briggs-Haldane velocity approximation type. Such nonlinearities occur in
biological applications in which enzyme mediated reactions must be modeled.
Our third example concerns a linear multiple delay system with unknown coef-

ficlents such as might arise in multi-compartment transport models, while

Example 4.4 contains a nonlinearity that is only locally Lipschitz and thus
it does not satisfy the hypotheses detailed above. It is interesting (although
not at all surprising) to observe that the methods under investigation also

perform admirably when applied to examples of this type.

The computations reported below were perfo;med on the IBM 370/158 at

Brown University. The goal of oyr numerical efforts was to test convergence
properties of the estimation algorithm on selected examples. This was done
in the following manner. 'True'" values of the parameters to be estimated
were chosen and an independent method was used to integrate the systems with

these values. These '"exact'" solutions or these solutions with random noise




adcded were used as observed 'data" (a number of "sample'" data points were
chosen) and the spline-based methods were employed with a least squares
criterion. For a given N, an IMSL package (ZXSSQ) for the Levenberg-Marquardt

method was used to iteratively find the corresponding parameters.

Example 4.1. (Nonlinear pendulum with delayed damping).
We consider the system
x(t) + kx(t - 1)+ (g/Dsin x(¢) =0 , O<t<7,

x(B) = 1, 0 < o,

x(6) =0, © <0.

IA

“Data’ consisting of 28 sample points at times in [0, 7] were generated for

"true" values r = 2, k = 4, and g/2 = 9.81. Several different estimation

probleﬁs were investigated.

(a) We seek to estimate r with k ='E, g/ =‘E7E given (start-up valu;: ° = 2.5).
We denote by ;N the "converged’ values for r corresponding to a fixed value

‘N of the approximation index.

o

2.429
2.412
1.908
16 2.003
32 2.002

We estimate r, g/¢ with k = X given (start-up values: P = 2.2, (8/9.)o =

8.6). For N = 16, we obtained T-C = 2.002, 877t = 9.84.

We estimate r, k with g/2 = g/¢ given (start-up values: r° = 2.5, k° = 8.0).

16 _ 3.977.

For N = 16, we obtained ;16 = 1.999, k




Example 4.2.

The nonlinear nonautonomous multiple delay equation for consideration is

. 3x(t - r,)
x(t) =-tx(t) + 2x(t - rl) + T X(E = 1) y O0<tc<d4,
- mo , -2<06<0,
x(Q) =
20 + m6 , -4<02-2,
,
"Data" were generated for 16 sampling times in [0, 4] using true values ;1 =1,
;2 = 2, K = 10, m=5. The following problems were studied and results obtained.

(a) Ve estimate Ts T, with K = E, m=m (start-up values: r? = .5, rg = 2.5).
N EN
N 1 2
2 1.055 1.600
4 1.013 1.896
8 1.007 1.943
16 .9995 2.003
32 .9998 2.003 ‘
(b) We estimate K for r, -';1, r, = ;2, m=m (start-up value: K° = .05).
N K
2 8.345
4 9.706
8 9.816
16 10.027
32 9.9998

P P O
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(¢} We estimate m for r, = ;1, r, = ;2, K=K (start-up value: n - - 4,0).

1

—~N
m

5.114
5.028
5.014
4.998
4.999

& oo ol

(d) We repeat the calculations of (c¢) except we corrupt the data with random

noise (Gaussian with zero mean and standard deviation ¢ = .1).

N o
2 5.059
4 4.973
8 4.956
16 4.940
32 4.940
Example 4.3

We congider next the linear multiple delay example

x(t) = - %x(t) +Bx(t - r)) +x(t-71,), 0<¢tc<3,

x(6) = a0 - 36, -4<0<0.

"True" values of 8 = 3, ;i =1, ?é = 2, a = ~.75 were used to produce 24 data

points on the interval [0, 3].

T e R mn - B e e ct o o sk e e ——————— et o o v




(a) We estimate o for 8 -‘E, rl

N a
2 -.661
4 -.724
8 -.742

16 -.748

32 -.749

40

= ;i. r, = ;é, (start-up

value: o° = 5.0).

(b) We estimate Tys Tos g with a = a (start-up values: r: = 1.3, r; 1.7,

8° = 3.5).
N
1
1.1233
1.0028
.9993
.9996
32 .9998

[
o ® &N |z

(c) We repeat the calculations

noise.
—N
N !
2 1.096
4 .9998
8 . 9940
16 .9934
.9941

—N
¥

1.600
1.957
2.009
2.005
2.002

of (b) with data that has

[\V]

1.600
1.970
2.024

2.025

2.023

—B-N

3.1642
3.0323
3.0064
3.0007
3.0000

been corrupted by

3.152
3.023
2.994
2.987

2.987




Example 4.4.

As our final example, we present a multiple delay equation with nonlinearity

satisfying only a local Lipschitz condition.
x(t) = - 1.5 x(t) - 1.25 x(t - r)) +ex(t - 1,) sin x(t - r,), 0<¢t <5,
x(®) = 100 + 1, 6 < 0.

True values were ¢ = 1,'? =1, r, = 2, and data were generated corresponding

1 2
to 20 sampling times in [0, 5]. We estimated Tys Tps € with start-up values of

r; = 1.4, r; = 2.2, = .2
B 5 N
1.0814 1.9863 1.0606
1.0537 1.9900 .9757
.9998 1.9906 .9745
.9992 1.9993 .9981
.9996 1.9995 .9986

- e
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§5 Appendix 2

i

I-I standard norm on Rn, L;(- r, 0), or more generally L;(a. b),
or on Z = R® x L;(— r, 0) :
n d
| Irv standard norm on L,(~ r , 0) ]
!
l.lq g(q) weighted norm on Z )

n n
| Ix,q standard norm on X(q) = R x L2(— T 0)

1
l.lp,q p(q) weighted norm on X(q) 1

]-IN p(qN) weighted norm on either Lg(~ rg, 0) or X(qN)
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